WEIGHT \& BALANCE:

The ability to check the loading of an aircraft by means of weight and balance calculation is crucial to the safety of a flight.

Weight is typically checked first and then the longitudinal centre of gravity (CG) balance. The aircraft weight and CG must fall within manufacturer determined limits for safe flight.

Example:

You aircraft, VH-RAQ, will be loaded as follows:

Pilot: 78 kg , passenger (pax): 85 kg , passenger: 60 kg , cargo: 20 kg , fuel: 120L
Determine if the aircraft weight and balance falls within the acceptable limits for safe flight.

1. Start With Weight

You can choose to use either imperial or metric units. Insert the aircraft's Basic Empty Weight (BEW), and decide where each passenger will sit. In the example, the Pilot and 85 kg pax will sit in Row 1 (the front two seats).

BEW is found by referring to an aircraft's load sheet. Every aircraft has a unique load sheet outlining its weight and CG.

The specific gravity (SG) of fuel is 0.72 . This means that 1 litre of fuel weighs $0.72 \mathrm{~kg} .120 \mathrm{~L} \times 0.72 \mathrm{SG}=86.4 \mathrm{~kg}$

Item	Weight		Arm		Moment / 1000	
	kg	lbs	mm	inches		
Basic Empty Weight	782.4					$\stackrel{1}{\square}$
Row 1	78+85					$\stackrel{\text { O}}{7}$
Row 2	60					$\frac{0}{0}$
Row 3						$\stackrel{\text { ® }}{ }$
Baggage 1	20					
Baggage 2						
Zero Fuel Weight	1025.4					\checkmark
Main Fuel Tanks	86.4					
Aux Fuel Tanks						
Take-off Weight	1111.8					\checkmark

A take-off weight of 1111.8 kg is less than the maximum take-off weight specified in the POH Section 2.

2. Determine The Arm For Each Station

Refer to C172 POH diagram "Loading Arrangements". It outlines the 'arm', or distance from the firewall that each station is located.

In the POH data, Row 1 is shown to lie 37 inches behind the firewall. If you've chosen metric for weights, you'll have to convert 37 inches to mm.

37 inches $\times 25.4=940 \mathrm{~mm}$. Write this on the table. The aircraft BEW arm is found on the load sheet, write this on the table also.

3. Calculating The Moment

In order to plot the weight and balance data onto a graph, we need to convert our weights and arms into a common unit called a 'moment'. The formula is as follows:

Weight x Arm = Moment (/1000)
Dividing the moment by 1000 simply makes the number more manageable.
$782.4 \times 1044=816.8 \mathrm{~kg} / \mathrm{mm}$
Calculate the remaining arms and moments for: Row 2, Baggage and Main Fuel Tanks.

4. Adding It Together

Once the moments are calculated, they can be added together to fill in the 'Zero Fuel Weight' (ZFW) row. Next, add the ZFW moment and the 'Main Fuel Tanks' moment to determine the 'Take-off Weight' (TOW) moment.

Item	Weight		Arm		Moment / 1000	
	kg	lbs	mm	inches		
Basic Empty Weight	782.4		1044		816.8	
Row 1	78+85		940		153.2	
Row 2	60		???		???	
Row 3						
Baggage 1	20		???		???	
Baggage 2						
Zero Fuel Weight	1025.4				1129.5	\checkmark
Main Fuel Tanks	86.4		???		???	
Aux Fuel Tanks						
Take-off Weight	1111.8				1234.8	\checkmark

5. Plotting To Check Balance

We now have a weight and moment for both the ZFW and TOW, which can be plotted onto the Moment Envelope to check balance.

Mark the envelope at two points and draw a straight line to intersect them.

This line represents the
 balance of the aircraft throughout the flight as fuel is burned to nil. If the entire line remains inside the envelope, the aircraft is considered safely balanced for flight.

6. Practice Exercise \#1

Using the weights in the example scenario, complete a second calculation to observe how the balance would change if both passengers were seated in Row 2.

7. Practice Exercise \#2

With four persons on board, each weighing 80kg, how much fuel could be added without exceeding max take-off weight or moment envelope?

PRESSURE \& DENSITY HEIGHT:

A driver is cruising at $80 \mathrm{~km} / \mathrm{h}$. This could be considered too fast or slow depending on the context. In order to definitively state if the driver's speed is fast or slow, a reference datum, or in this case, a speed limit should be used for comparison. This is the same concept for aircraft performance.

In order to accurately determine if our aircraft will perform well or poorly, we must adopt a datum or standard conditions to compare against. These are called the International Standard Atmosphere (ISA).

International Standard Atmosphere:
QNH @ MSL = 1013hPa
Temp @ MSL = $15^{\circ} \mathrm{C}$
Pressure lapse rate $=1 \mathrm{hPa} / 30 \mathrm{ft}$
Temperature lapse rate $=2^{\circ} \mathrm{C} / 1000 \mathrm{ft}$
Temperature lapse rate (constant hPa) $=1^{\circ} \mathrm{C} / 120 \mathrm{ft}$

Example:

Calculate density height, given the following conditions:
QNH: 1007 hPa , Temperature: $2^{\circ}{ }^{\circ} \mathrm{C}$, Location: Kingaroy

8. Start with Pressure Height (PH)

Ask yourself: Is 1007 hPa better or worse performance than a standard day? Knowing this will allow you to crosscheck your final answer. 1007 hPa is less pressure than 1013 hPa , so performance will be reduced.
9. Calculate Deviation from ISA

ISA QNH - Actual QNH = Deviation
$1013 \mathrm{hPa}-1007 \mathrm{hPa}=+6 \mathrm{hPa}$
10. Convert Pressure Deviation into Height

Deviation x pressure lapse rate
$+6 \mathrm{hPa} \times 30 \mathrm{ft}=+180 \mathrm{ft}$
11. Factor Aerodrome Elevation into the Calculation

Height Variance + Elevation
$+180 \mathrm{ft}+1492 \mathrm{ft}=+1672 \mathrm{ft}$
Pressure Height $=+\mathbf{1 6 7 2 f t}$
In the given conditions, an aircraft taking off at YKRY (1492ft) will experience performance characteristics the same as an aircraft taking off at 1672 ft on an ISA day. That is, it will experience a slight loss of performance, when pressure alone is considered. However, an aircraft's performance is ultimately determined by the density, which factors in both pressure and temperature.

12. With PH Calculated, Work out Density Height (DH)

To determine the temperature deviation from ISA, we must first ensure we're making a direct comparison. The question gives temperature $\left(28^{\circ} \mathrm{C}\right)$ which is at PH 1672 ft , not MSL. The $15^{\circ} \mathrm{C}$ ISA figure is at MSL, so we must calculate an equivalent ISA temperature for 1672 ft .

Based on the $2^{\circ} \mathrm{C} / 1000 \mathrm{ft}$ lapse rate, the ISA temperature at 1500 ft would be $12^{\circ} \mathrm{C}$. (PH can be rounded to the nearest 500ft). Eg: ISA temp at $3877 \mathrm{ft}=7^{\circ} \mathrm{C}$ (rounded 4000ft)

13. Consider Deviation from ISA

ISA @ 1500ft $=12^{\circ} \mathrm{C}$ and Actual @1500ft $=28^{\circ} \mathrm{C}$
$28^{\circ} \mathrm{C}-12^{\circ} \mathrm{C}=+16^{\circ} \mathrm{C}$ Deviation
The Actual temperature is $16^{\circ} \mathrm{C}$ warmer than ISA.

14. Factor Elevation into the Calculation

Temperature Deviation x temp lapse rate (constant hPa)
$+16^{\circ} \mathrm{C} \times 120 \mathrm{ft}=+1920 \mathrm{ft}$
15. Combine Pressure and Temperature:

Temperature Calc \pm Pressure Height $=$ Density Height
$+1920 \mathrm{ft}+1672 \mathrm{ft}=3592 \mathrm{ft}$
Density Height $=\mathbf{3 5 9 2 f t}$
In the given conditions, an aircraft taking off at YKRY (1492ft) will experience performance characteristics the same as an aircraft taking off at 3592 ft on an ISA day. That is, it will experience a significant loss of performance, when pressure and temperature are considered.

SUMMARY OF FORMULAS:

Pressure Height $=(1013-$ Actual QNH $) \times 30 \mathrm{ft}+$ Elevation
Density Height $=($ Temp Deviation $\times 120 \mathrm{ft}) \pm$ Pressure Height

PRACTICE QUESTIONS:

Find Density Height for:
1 - Kingaroy, QNH 1020 hPa , Temp $16^{\circ} \mathrm{C}$
2 - Redcliffe, QNH 1001 hPa, Temp $24^{\circ} \mathrm{C}$
3 - Toowoomba, QNH 1006 hPa , Temp $32^{\circ} \mathrm{C}$
4 - Archerfield, QNH 1017 hPa , Temp $5^{\circ} \mathrm{C}$

TAKE-OFF \& LANDING DISTANCE:

Calculating pressure and density height is purely academic unless we use the data for a practical purpose. Pilots must be able to accurately calculate PH and DH, as aircraft take-off and landing performance charts require this data in order to extract a takeoff or landing distance required.

Scenario: You have calculated the following for your operations at Kingaroy aerodrome:
Pressure Height $=+1672 \mathrm{ft}$
Density Height $=+3592 \mathrm{ft}$
Aircraft Weight = 2380lbs
The ambient conditions are as follows:
Wind: $050^{\circ} \mathrm{M} / 10 \mathrm{kt}$
Temperature: $28^{\circ} \mathrm{C}$
Surface: Grass (smaller runway)
Determine the take-off and landing distance required.

1. Consult the POH Take-off Tables

The Cessna 172S POH offers three take-off tables based on increasing aircraft weight (2250lbs, 2400lbs, 2550lbs). You should round your calculated aircraft weight up to the next highest weight table. eg: Given weight is 2380lbs, so the 2400lb performance table will be used.

2. (Method A) Enter the Table using PH \& Temp

Using your calculated pressure height of +1672 ft , enter the table on the left column. 1672ft should be rounded up to the nearest 500 ft , which will take us to 2000 ft .

If the PH happened to be 1450 ft and was rounded to 1500 ft , an interpolation of the 1000 ft and 2000 ft data would be required.

Interpolating is the same as averaging:
Ground Roll: (1010ft + 1110ft) / $2=1060 f t$
Total to 50ft: $(1720+1890) / 2=1805 f t$
The ambient temperature is $28^{\circ} \mathrm{C}$, so rounding up to the $30^{\circ} \mathrm{C}$ column is suitable. Temps can be interpolated to the nearest $5^{\circ} \mathrm{C}$.
3. (Method B) Enter the Table using Declared DH only If you've obtained DH using a declared density chart (PPL students), you will not have a PH to enter the table. This is okay, because PH and DH are the same if the temperature is at ISA. To use the performance table, you must determine the ISA temperature at the DH of +3592 ft , which is $8^{\circ} \mathrm{C}$.

Enter the table using the given DH of +3592 ft in the PH column (rounding to 4000 ft). The temp will be $10^{\circ} \mathrm{C}$, which is the ISA $8^{\circ} \mathrm{C}$ rounded up.

Note the answer obtained in 'Method B' is virtually the same as 'Method A', with a slight inaccuracy due to rounding. Both methods are a valid option based on the data you have available.

	$0^{\circ} \mathrm{C}$		$10^{\circ} \mathrm{C}$		$20^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}$		$40^{\circ} \mathrm{C}$	
Press Alt In Feet	$\begin{array}{\|l\|l} \hline \text { Gimd } \\ \text { Rooll } \\ \text { Ft } \end{array}$	Total Ft To Clear 50 Ft Obst	$\begin{array}{\|l\|} \hline \text { Grnd } \\ \text { Roll } \\ \text { Ft } \end{array}$	$\begin{array}{\|l\|l} \hline \text { Total } \\ \mathrm{Ft} \\ \mathrm{To} \\ \mathrm{Clear} \\ 50 \mathrm{Ft} \\ \text { Obst } \\ \hline \end{array}$	$\begin{gathered} \text { Grnd } \\ \text { Roil } \\ \text { Ft } \end{gathered}$	Total Ft To Clear 50 Ft Obst	$\begin{array}{\|c\|} \hline \text { Grnd } \\ \text { Roll } \\ \mathrm{Ft} \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Total } \\ \mathrm{Ft} \mathrm{To} \\ \mathrm{Clear} \\ 50 \mathrm{Ft} \\ \text { Obst } \\ \hline \end{array}$	$\begin{array}{\|l} \text { Grnd } \\ \text { Roll } \\ \text { Ft } \end{array}$	Total Ft To Clear 50 Ft Obst
S. L.	745	1275	800	1370	860	1470	925	1570	995	1685
1000	810	1390	875	1495	940	1605	1010	1720	1085	1845
2000	885	1520	955	1635	1030	1760	1110	1890	1190	2030
3000	970	1665	1050	1795	1130	1930	1215	2080	1305	2230
4000	1065	1830	1150	1975	1240	2130	1335	2295	1430	2455
5000	1170	2015	1265	2180	1360	2355	1465	2530	1570	2715
6000	1285	2230	1390	2410	1500	2610	1610	2805	1725	3015
7000	1415	2470	1530	2685	1650	2900	1770	3125	1900	3370
8000	1560	2755	1690	3000	1815	3240	1950	3500	2095	3790

4. Factoring The POH Data

Now that we have a basic take-off distance required (TODR) of 1890 ft and ground roll of (GR) of 1110 ft , we need to factor these answers for any variables that may affect the distance such as runway surface and wind. The POH specifies the factoring as a percentage and is written below the Performance Tables.

NOTE

- Short field technique as specified in Section 4.
- Prior to takeoff from fields above 3000 feet elevation, the mixture should be leaned to give maximum RPM in a full throttle, static runup.
- Decrease distances 10% for each 9 knots headwind. For operation with tail winds up to 10 knots, increase distances by 10% for each 2 knots.
- For operation on dry grass runway, increase distances by 15% of the "ground roll" figure.

Figure 5-5. Short Field Takeoff Distance (Sheet 2)

Use the attached 'Take-off Distance Required Flow Chart' to factor for ambient conditions.

5. Comparison Against Runway Length

Once you've obtained a final TODR, convert to meters and make a comparison of the actual runway length in ERSA. If the calculation is less than the runway length, the operation is considered safe.

Calculations made with actual ambient data are valid for 15 minutes. Declared conditions are valid for the season of operation.

	Aircraft Weight \& Balance	
Aircraft Type:	Aircraft Rego:	
Pilot:	Date of Flight:	

Item	Weight		Arm		Moment / 1000	
	kg	Ibs	mm	inches		
Basic Empty Weight						
Row 1						
Row 2						
Row 3						
Baggage 1						
Baggage 2						
Zero Fuel Weight						
Main Fuel Tanks						
Aux Fuel Tanks						
Take-off Weight						1

Take-off Distance Required		Location:
Pressure Height:	Temperature:	Density Height:

Landing Distance Required		Location:
Pressure Height:	Temperature:	Density Height:

From	Into	Factor (multiply or divide)
Inches	Centimeters	$\times 2.54$
Inches	Millimeters	$\times 25.4$
Feet	Meters	$\times 0.3048$
Pounds	Kilograms	$/ 2.2046$
Kilometers	Nautical Miles	$/ 0.539$
US Gallons	Litres	$\times 3.79$
Litres of AVGAS	KG of Avgas	$\times 0.72$
US Gallons of AVGAS	KG of Avgas	$\times 2.72$

1. To convert:
multiply by the factor in the "balloon" when moving in the direction of the arrow, or divide by that factor if converting in the opposite direction.
2. Fuel SG (0.8 AVTUR and 0.72 AVGAS $)$ is based on ISA temperature at MSL Therefore, fuel weights will be approximate for other than 15DEG Celsius.
