

Turning

Aim

To teach the student how to carry out types of turn and how to turn accurately towards features and on to specific headings.

Objectives:

At the end of this briefing the student should be able to....

1. CORRECTLY STATE the relationship between LIFT and WEIGHT in a level turn.
2. DESCRIBE the causes of over banking in a turn
3. DESCRIBE the effect of turning on aircraft balance
4. DESCRIBE adverse aileron yaw and the methods used to prevent it
5. DETAIL the techniques to enter, maintain and recover from a turn

Three types of turns

1. Gentle - approx 15° angle of bank
2. Medium - approx 30° angle of bank
3. Steep -45° angle of bank or greater

Newtons laws of motion

- A moving body tends to continue moving in a straight line at a constant speed
- To change its speed or direction a net external force must be exerted on this body

FORCES ACTING IN A NORMAL TURN

Chesterfield Publications

Load Factor

-	$\mathrm{S} \& \mathrm{~L} \mathrm{L=W}$	1.0
-	$30^{\circ} \mathrm{AOB}$	1.15
-	$45^{\circ} \mathrm{AOB}$	1.40
-	$60^{\circ} \mathrm{AOB}$	2.0

OVERBANKING

Outer wing travels further Therefore faster therefore lift. MORE LIFT on the OUTER WING therefore more ROLL in the Direction of turn - Hence a need to HOLD OFF THE BANK.

Aileron Drag

Deflecting an aileron is like cambering the airfoil section of the wing: it changes the lift at the same angle of attack

ADVERSE AILERON YAW towards down aileron (i.e. opposite to the direction of turn)

Aileron types

Differential Ailerons
Frise Ailerons

Balance

Balance

Balance

Climbing Turns

- LIMIT TO 15° AOB
- Increased Drag, therefore reduced ROC
- there is an OVERBANKING TENDANCY in a climbing turn

Descending Turns

- 30° AOB
- Increased Drag, therefore increased rate of descent
- There is LESS tendency to OVER BANK in a descending turn

APPLICATION

TURN ENTRY

ENTRY TO THE TURN

Application - Entering the turn

- TRIM the aircraft for STRAIGHT \& LEVEL FLIGHT
- DO NOT trim in the turns
- CHECK ALTITUDE for a reference
- LOOKOUT in direction of turn, raising and lowering wing
- LOOKOUT in opposite direction and behind
- Select REFERENCE POINT to roll out
- Roll IN with AILERONS and BALANCE with RUDDER
- ESTIMATE the bank angle using natural HORIZON (select 30°)
- Slight BACK PRESSURE on control column to maintain height
- Maintain continual SCAN in turn \& make slight adjustments as needed
- Commence ROLL OUT at half AoB.

CONTROL WHEEL LEFT TO TURN IN THIS DIRECTION

DIFFERENTIAL AILERON DRAG YAWS NOSE RIGHT (ADVERSE AILERON YAW)

UP AILERON = LESS LIFT AND LESS DRAG

DOWN AILERON = MORE LIFT, BUT MORE DRAG

OFFSET SEATING

MAINTENANCE OF THE TURN

Work Cycle

Lookout
Attitude
Balance

Note the horizon relative to the cowl has changed in both left and right turns.

Common faults during the turn

| GAINING HEIGHT |
| :--- | :--- | :--- |
| Incorrect nose attitude |
| Bank angle too shallow |
| Back pressure too great |\quad| LOOSING HEIGHT |
| :--- |
| Incorrect nose attitude |
| Bank angle too steep |
| Back pressure insufficient |

RECOVERY FROM THE TURN

Work Cycle

1. Lookout
2. Anticipate reference point by approximately 10°
3. Roll off bank with ailerons to wings level
4. Balance with rudder
5. Release back pressure

Note the horizon relative to the cowl has changed in both left and right turns.

CLIMBING AND DESCENDING TURNS

Climbing \& Descending Turns

CLIMBING - max bank 15 degrees

- Climbing turn essentially same as level turn except ASI confirms nose attitude 67 Kts
- Over banking tendency (may need to hold off aileron)

DESCENDING - Bank 30 degrees

- Descending turn same as level turn except ASI confirms attitude 60 Kts
- Less over banking tendency

Remember!!!
Power
Attitude
Trim

AIRMANSHIP

- Cloud Clearance
- Smooth operation of controls
- Handing over / taking over
- Look out 90% Visual 10% Instruments
- Clear nose every 500^{\prime} / Warm engine every 1000^{\prime}
- Recover by 1000^{\prime} minimum
- Calculate fuel required

Class G

Turning

Aim

To teach the student how to carry out types of turn and how to turn accurately towards features and on to specific headings.

Objectives:

At the end of this briefing the student should be able to....

1. CORRECTLY STATE the relationship between LIFT and WEIGHT in a level turn.
2. DESCRIBE the causes of over banking in a turn
3. DESCRIBE the effect of turning on aircraft balance
4. DESCRIBE adverse aileron yaw and the methods used to prevent it
5. DETAIL the techniques to enter, maintain and recover from a turn
